Lazy Learning for Predictive Toxicology based on a Chemical Ontology

نویسندگان

  • Eva Armengol
  • Enric Plaza
چکیده

Predictive toxicology Predictive toxicology is the task of building models capable of determining, with a certain degree of accuracy, the toxicity of chemical compounds. We discuss several machine learning methods that have been applied to build predictive toxicology models. In particular, we present two lazy learning lazy learning techniques applied to the task of predictive toxicology. While most ML techniques use structure relationship models to represent chemical compounds, we introduce a new approach based on the chemical nomenclature to represent chemical compounds. In our experiments we show that both models, SAR and ontology-based, have comparable results for the predictive toxicology task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-Instance Case-Based Learning for Predictive Toxicology

Predictive toxicology is the task of building models capable of determining, with a certain degree of accuracy, the toxicity of chemical compounds. Machine Learning (ML) in general, and lazy learning techniques in particular, have been applied to the task of predictive toxicology. ML approaches differ in which kind of chemistry knowledge they use but all rely on some specific representation of ...

متن کامل

Discovering Plausible Explanations of Carcinogenecity in Chemical Compounds

The goal of predictive toxicology is the automatic construction of carcinogenecity models. Most common artificial intelligence techniques used to construct these models are inductive learning methods. In a previous work we presented an approach that uses lazy learning methods for solving the problem of predicting carcinogenecity. Lazy learning methods solve new problems based on their similarit...

متن کامل

Using explanations for determining carcinogenecity in chemical compounds

The goal of predictive toxicology is the automatic construction of carcinogenecity models. Most common artificial intelligence techniques used to construct these models are inductive learning methods. In a previous work we presented an approach that uses lazy learning methods for solving the problem of predicting carcinogenecity. Lazy learning methods solve new problems based on their similarit...

متن کامل

Discovery of Toxicological Patterns with Lazy Learning

In this paper we propose the use of a lazy learning technique called LID for discovering patterns in the Toxicology dataset. LID classifies examples and builds an explanation of that classification. We analyzed the Toxicology dataset using a two-step proces: first we use LID for classifying all the cases in the dataset. Then we select a subset of explanations and use them as patterns that captu...

متن کامل

Toxicology ontology perspectives.

The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006